

Toward Development of Intelligent System for Radiological Imaging

-HANUNG ADI NUGROHO-

Department of Electrical and Information Engineering Faculty of Engineering Universitas Gadjah Mada

LOCALLY ROOTED, GLOBALLY RESPECTED

Ir. Hanung Adi Nugroho, Ph.D., IPM

Department of Electrical and Information Engineering Faculty of Engineering, Universitas Gadjah Mada Jl. Grafika 2, Kampus UGM, Yogyakarta 55281, Indonesia Telp./ fax. +62-274-552305 Email: adinugroho@ugm.ac.id; adinugroho@ieee.org Scopus author ID: 35190649200 D http://orcid.org/0000-0001-7749-8044 Website: http://adinugroho.staff.ugm.ac.id

Research areas: Biomedical signal and image processing and analysis; computer vision; medical instrumentation; pattern recognition; data mining; statistical data analysis.

Bachelor of Engineering (S.T.) – Teknik Elektro, Universitas Gadjah Mada, Yogyakarta, Indonesia (2001)

Master of Engineering (M.E.) – School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Australia (2005)

Doctor of Philosophy (Ph.D.) – Electrical and Electronics Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia (2012)

LOCALLY ROOTED, GLOBALLY RESPECTED

Universitas Gadjah Mada Department of Electrical and Information Engineering

18 Laboratories:

2 Basic labs 3 Service labs 13 Research labs

10 Research groups:

- 1. e-Systems Research Group
- 2. Software Engineering-Technology Enhanced Education-Computer Human Interaction
- 3. Digital Systems
- 4. Smart System and Communication Technology
- 5. Power System
- 6. Power Electronics
- 7. Intelligent Systems
- 8. System of Instrumentation, Control, Automation and Robotics
- 9. Digital Native and Literacy
- 10. High Voltage and High Current Engineering

LOCALLY ROOTED, GLOBALLY RESPECTED

adinugroho@ugm.ac.id

UNIVERSITAS GADJAH MADA

Universitas Gadjah Mada Department of Electrical and Information Engineering

110

staffs

Lecturer (M.Eng) : 25 staff

Lecturer (PhD) : 37 staff

Lecturer (Prof) : 2 staff

Academic staff: 47 staff

BAN-PT Accreditation : A

6 Study programs:

- □ Bachelor of Electrical Engineering Program
- Bachelor of Information Engineering Program
- Bachelor of Biomedical Engineering Program
- □ Master of Electrical Engineering Program
- □ Master of Information Engineering Program
- Doctoral of Electrical Engineering Program

Bachelor student : 1066 students Master student : 245 students Doctoral student : 63 students

LOCALLY ROOTED, GLOBALLY RESPECTED

1374

students

Peoples

Oyas Wahyunggoro, Ph.D oyas@ugm.ac.id

Intelligent Control, Instrumentation, Fuzzy System and Genetic Algorithm

Teguh Bharata Adji, Ph.D

adji@ugm.ac.id Natural Language Processing, Computational Linguistic, Al, Data Warehouse, Data Mining, S/W Testing & Reliability

Dr. Eng. Silmi Fauziati silmi@ugm.ac.id

Decision Support System for Crisis Management Disasters, Geoinformatics

Hanung Adi Nugroho, Ph.D adinugroho@ugm.ac.id Biomedical Engineering, Signal and Image Processing and Analysis, Computer Vision, Machine Learning,

Indriana Hidayah, Ph.D indriana@ugm.ac.id

Medical Imaging

Data Mining, Intelligent System, Software Engineering

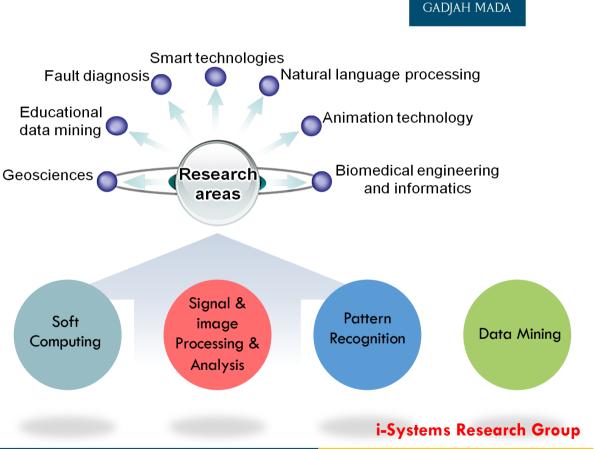
Adhistya Erna Permanasari, Ph.D adhistya@ugm.ac.id

Decision Support System, Software Engineering, Database

Noor Akhmad Setiawan, Ph.D

noorwewe@ugm.ac.id Soft Computing, Rough Set Theory, Fuzzy Set and Logic, Artificial Neural Network, Knowledge Discovery, Data Mining, Biomedical Engineering and Information

Dr. Eng. Sunu Wibirama sunu@ugm.ac.id


Computer Vision, Medical Image Processing, Computational Neuroscience, Eye-gaze Tracking, Human Computer Interaction

Dr. Eng. Igi Ardiyanto igi@ugm.ac.id

Robotics, Intelligent Vehicles, Embedded System, Computer Vision, Parallel Computing

DEVELOPMENT OF INTELLIGENT SYSTEMS FOR SMART ENVIRONMENT

LOCALLY ROOTED, GLOBALLY RESPECTED

Decision

Support

System

adinugroho@ugm.ac.id

UNIVERSITAS

OUTLINE

2

Artificial Intelligence for Thyroid Nodule Classification

Artificial Intelligence Application

LOCALLY ROOTED, GLOBALLY RESPECTED

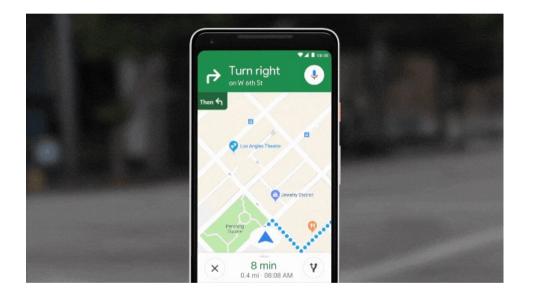
OUTLINE

Artificial Intelligence Application

Artificial Intelligence for Thyroid Nodule Classification

LOCALLY ROOTED, GLOBALLY RESPECTED

ARTIFICIAL NTELLIGENCE Early artificial intelligence MACHINE stirs excitement. LEARNING Machine learning begins DEEP to flourish. LEARNING Deep learning breakthroughs drive Al boom. 2010's 1950's 1960's 1970's 1980's 1990's 2000's


ARTIFICIAL INTELLIGENCE

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

LOCALLY ROOTED, GLOBALLY RESPECTED

APPLICATION OF AI

IT Application *Smart phone application*

LOCALLY ROOTED, GLOBALLY RESPECTED

AI IN MEDICAL APPLICATION

Al-enabled population health

Platform ingesting, analyzing, and providing recommendations on population health data

- Surveillance and prediction
- Population risk management
- Intervention selection
- Intervention targeting

Patient virtual health assistant

Assisting patients to direct their own care and wellness, e.g., data-driven diagnostics with care recommendations

- Self-referral
- Personalized outreach
- Behavior change
- Data-driven diagnosis
- Al-facilitated care
- Medical records

FHW virtual health assistant

Augmenting FHW expertise to direct patient care, e.g., triage and symptom-based diagnostics and care recommendations

- Self-referral
- Personalized outreach
- Behavior change
- Data-driven diagnosis
- Al-facilitated care
- Medical records

Physician clinical decision support

Providing more specialized expertise to generalist physicians, e.g., enabling a GP to read diagnostic images

- Image-based diagnosis
- Clinical decision support
- Quality assurance and training

Source: Artificial Intelligence in Global Health. USAID (2019)

LOCALLY ROOTED, GLOBALLY RESPECTED

Research Scope

OUTLINE


2

Artificial Intelligence Application

Artificial Intelligence for Thyroid Nodule Classification

LOCALLY ROOTED, GLOBALLY RESPECTED

LOCALLY ROOTED, GLOBALLY RESPECTED

THYROID CANCER FACTS

In 2019, thyroid cancer is

predicted to reach top three

malignancy in women

In Indonesia, it ranked 9th from all cancer illness which

is 347.792 cases per 2017

Comparison of thyroid cancer in women and men is **3** : **1**

> Become number **1** in endocrine malignancy in Indonesia.

Source: Ministry of Health of RI, Global Health, US Cancer Institute, American Cancer Society

÷.,

It ranked 5th in cancer suffered by women at 5% (49.350 cases) from total 822.200 cases.

LOCALLY ROOTED, GLOBALLY RESPECTED

See.

THYROID EXAMINATION

More Detail

Expensive

• Limited availability

TIRADS describes the important characteristic of thyroid nodule based on USG images

TIRADS: Thyroid Imaging Reporting and Data System

Thus, the computer aided diagnosis (CAD) based on ultrasound images is needed

The system aims to reduce miss-interpretation and as second opinion / objective opinion in diagnosis

• Minor surgical procedure

Cheaper, No radiation

Short acquisition time

Non traumatic, Non invasive High subjectivity interpretation

High availability

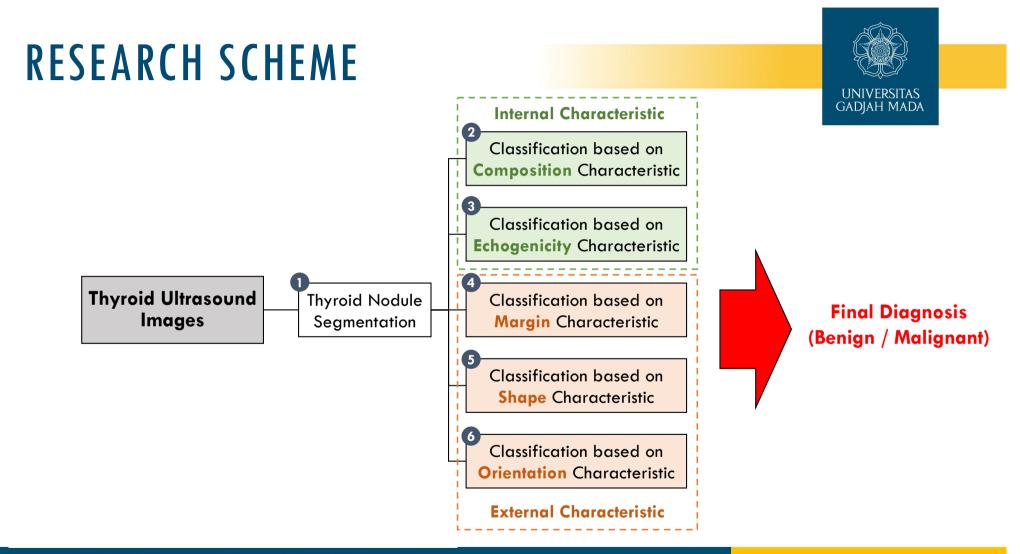
Secondary examination

Doctors' experience

• Invasive procedure

LOCALLY ROOTED, GLOBALLY RESPECTED

adinugroho@ugm.ac.id

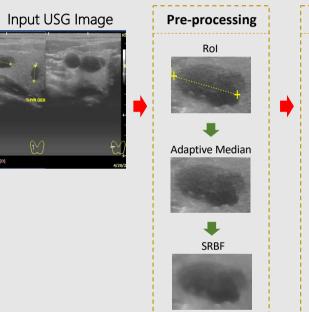

UNIVERSITAS GADJAH MADA

THYROID EXAMINATION

	NORMAL		No.	Characteristic	Class
\	PHILIPS 28.12.2005 H02 (2005 sa ct. Rpe-onasine GAO "PXQ" S16236		1.	Composition	Solid
	1-7 (Annua - 1) 82 ca - 7 (Annua - 1) 81 ca - 7 (Annua - 1) 81 ca				Cystic
					Complex
-	A A A A A A A A A A A A A A A A A A A	т	2.	Echogenicity	Anechoic
		il			Isoechoic
		R			Hyperechoic
M		А			Hypoechoic
		D			Markedly Hypoechoic
Thyroid Gland	ABNORMAL	S	3.	Margin	Smooth
	SP 6425MP Mt 1.1 FISHIP DE SARDATO 0.00075256 0.0001 1002 101312012 (130.37) 0.001 72 0.001 1001 1001				Irregular
$\mathbf{\lambda}$			4.	Shape	Round to Oval
	0 0 4 3				Irregular
			5.	Orientation	Parallel
					Nonparallel

LOCALLY ROOTED, GLOBALLY RESPECTED

LOCALLY ROOTED, GLOBALLY RESPECTED


LOCALLY ROOTED, GLOBALLY RESPECTED

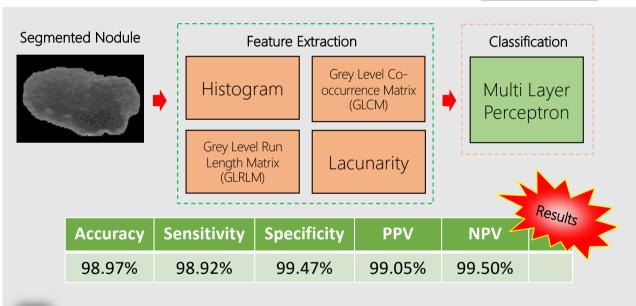
- Thyroid Nodule Segmentation
- Classification based on
- Composition Characteristic
- Classification based on
- Echogenicity Characteristic
- Classification based on Margin
- Characteristic
- Classification based on Shape
- Characteristic

LOCALLY ROOTED, GLOBALLY RESPECTED

- Thyroid Nodule Segmentation
- Classification based on
- Composition Characteristic
- Classification based on
- Echogenicity Characteristic
- Classification based on Margin `
- Characteristic
- Classification based on Shape
- Characteristic

Segmentation

UNIVERSITAS
GADJAH MADAResultsComponentValueMSE53.19SNR19.92PNSR30.87AD0.0221SI1.32e-5


Success in reducing speckle noises using bilateral filtering as it supports active contour segmentation effectively

H. A. Nugroho, A. Nugroho, and L. Choridah, "Thyroid Nodule Segmentation Using Active Contour Bilateral Filtering on Ultrasound Images," Int. Conf. io Qual. Res., pp. 43–46, 2015.

LOCALLY ROOTED, GLOBALLY RESPECTED

W- 1288 W

- Thyroid Nodule Segmentation
- Classification based on
- Composition Characteristic
- Classification based on
- Echogenicity Characteristic
- Classification based on Margin
- Characteristic
- Classification based on Shape
- Characteristic

H. A. Nugroho, M. Rahmawaty, Y. Triyani, and I. Ardiyanto, "Texture Analysis for Classification of Thyroid Ultrasound Images," in 2016 International Electronics Symposium (IES), 2016, pp. 476–480.

E.L. Frannita, H.A. Nugroho, A. Nugroho, Zulfanahri, I. Ardiyanto, "Performance of Lacunarity Features for Classifying Thyroid Nodule using Thyroid Ultrasound Images," in the 2nd International Conference on Imaging Signal Processing and Communication (ICISPC), Kuala Lumpur, 2018

LOCALLY ROOTED, GLOBALLY RESPECTED

adinugroho@ugm.ac.id

UNIVERSITAS GADJAH MADA

EXISTING RESULT UNIVERSITAS GADJAH MADA Thyroid Nodule Segmentation Segmented Nodule Feature Extraction Classification Grey Level Co-Histogram Multi Layer occurrence Matrix Classification based on (GLCM) Perceptron **Composition Characteristic** Grey Level Run Law's Texture Length Matrix Energy (GLRLM) **Classification based on** 0 0 Echogenicity Characteristic Sensitivity Specificity Classification based on Margin Accuracy **PPV NP** Characteristic 93.69% 93.36% 97.87% 93.82% 97.88% **Classification based on Shape** H. A. Nugroho, Zulfanahri, A. Nugroho, E. Frannita, I. Ardiyanto and L. Choridah, "Feature Extraction Based Characteristic

on Laws' Texture Energy for Lesion Echogenicity Classification of Thyroid Ultrasound Images," in 2017 International Conference on Computer, Control, Informatics and its Applications, 2017, pp. 41–46.

LOCALLY ROOTED, GLOBALLY RESPECTED

Thyroid Nodule Segmentation

- Classification based on
- Composition Characteristic
- Classification based on
- Echogenicity Characteristic

Classification based on Margin
Characteristic

Classification based on Shape
Characteristic

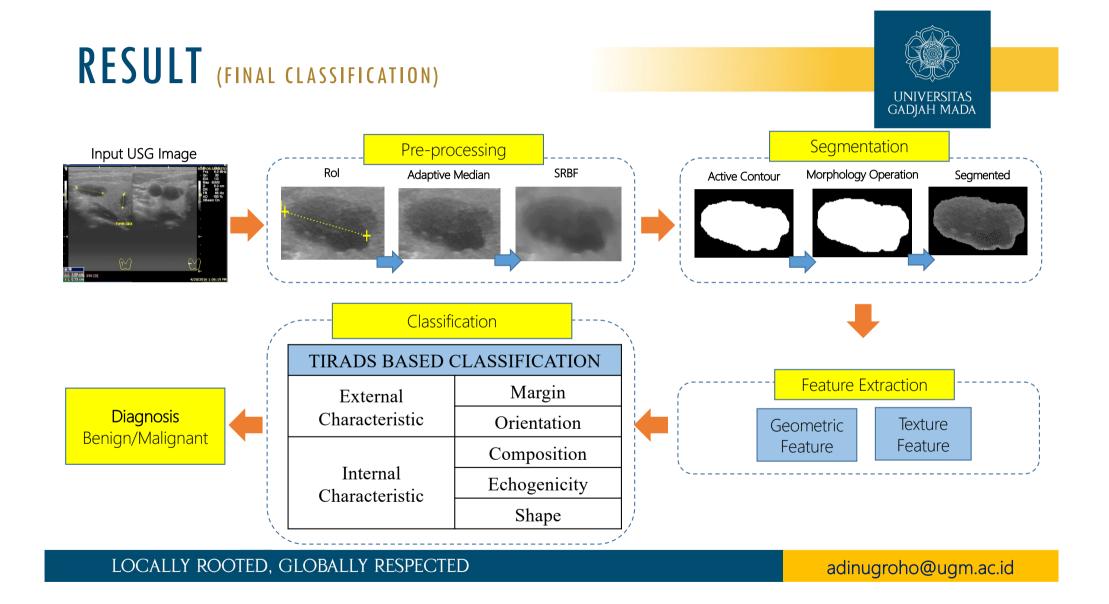
Segmented Nodule Feature Extraction Classification Output: Geometric Smooth Support Vector Feature Irregular Machine Sensitivity Specificity **PPV** NPV Accuracy 92.30% 91.88% 92.73% 92.80% 91.80%

H. A. Nugroho, E. L. Frannita, A. Nugroho, Zulfanahri, I. Ardiyanto, and L. Choridah, "Classification of Thyroid Nodules Based on Analysis of Margin Characteristic," in 2017 International Conference on Computer, Control, Informatics and its Applications, 2017, pp. 47–51.

LOCALLY ROOTED, GLOBALLY RESPECTED

adinugroho@ugm.ac.id

UNIVERSITAS GADJAH MADA


EXISTING RESULT UNIVERSITAS GADJAH MADA Thyroid Nodule Segmentation Segmented Nodule Feature Extraction Classification Output: Geometric 1. Round to Oval Support Vector Feature 2.Irregular Classification based on Machine **Composition Characteristic Momment** Feature **Classification based on Echogenicity Characteristic Specificity** Sensitivity **PPV** NPV Accuracy Classification based on Margin Characteristic 92.30% 91.88% 92.73% 92.80% 91.80% Classification based on Shape Zulfanahri, H. A. Nugroho, A. Nugroho, E. L. Frannita, and I. Ardiyanto, "Classification of Thyroid 0 Ultrasound Images Based on Shape Features Analysis," in The 2017 Biomedical Engineering International Ō **Characteristic** Conference (BMEiCON-2017), 2017

LOCALLY ROOTED, GLOBALLY RESPECTED

FINAL RESULT OF THYROID CLASSIFICATION

LOCALLY ROOTED, GLOBALLY RESPECTED

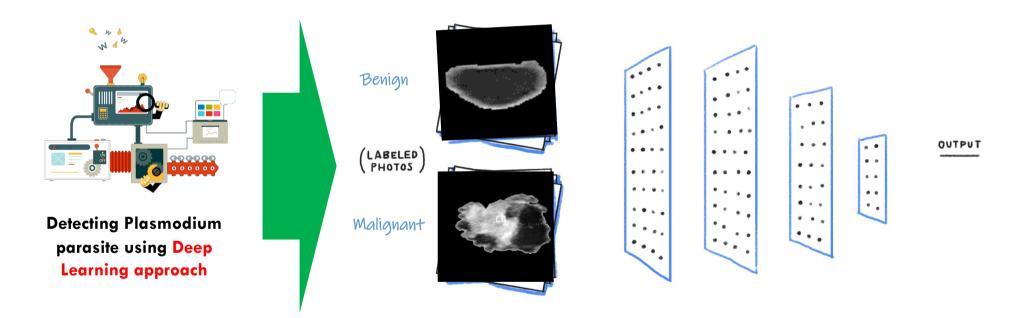
DIAGNOSIS RULE (FINAL CLASSIFICATION)

Margin	Shape	Orientation	Rule Diagnosis								
Smooth	Round to Oval	Parallel	Malignant								
SHIOOTH	Round to Oval Non-Parallel		Benign •								
	Round to Oval	Parallel	Malignant								
Irregular	Round to Oval	Non-Parallel	Malignant								
	Irregular	Parallel	Malignant								
	Irregular	Non-Parallel	Malignant								

External Characteristics

Composition Echogenicity **Rule Diagnosis** Anechoic Cystic Benign Malignant Markedly Hypo Solid Hypoechoic Malignant Isoechoic Benign Markedly Hypo Malignant Complex Hypoechoic Malignant Isoechoic Benign

Internal Characteristics


·--->

LOCALLY ROOTED, GLOBALLY RESPECTED

PERFORMANCE RESULT (FINAL CLASSIFICATION)																	
Internal Characteristics								External Characteristics						UNIVERSITAS GADJAH MADA			
					(Confusion Matrix								Confusion Matrix			
Testi Da ⁻			Benign Maligna		Predicted Class		d Class		Testing		Benign Malignant		18 27	Predicted Class		d Class	
			Total	54	Mal	lignant	Benign		Data		Total	45		Mali	gnant	Benign	
Composition		True	Malignant	41		2		Margin		True	Mal	alignant		23	4		
Echogenicity		Class	Benign	1		10		Shape Orientation		Class	Be	Benign		1	17		
	No.		Ou	tput		Result			No.		Ou	tput		Result			1
	1.	Accura	Accuracy 94.44% Sensitivity 95.35%						1. Accuracy					88.89%			
	2.	Sensiti							2.	Sensitiv			85.19%				
	3.	30.31 /8					90.91%		3.	Specificity					94.44%		
	4.						.62%		4.	Positive	ive Va	alue		95.83%			
	5.	Negative Predictive Value 83.33%						5.	Negative Predictive Value						80.95%		
	LC	DCALLY	ROOTE	d, globall	Y RE	SPECTE	D						a	dinugi	roho@	ugm.ac.id	

FUTURE WORK

Deep Learning is part of a broader family of machine learning methods based on learning data representations, as opposed to task-specific algorithms

LOCALLY ROOTED, GLOBALLY RESPECTED

TEAM MEMBERS AND COLLABORATOR

Department of Electrical Engineering and Information Technology, Faculty of Engineering, Universitas Gadjah Mada, Indonesia

> Hanung Adi Nugroho, Igi Ardiyanto, Made Rahmawati, Yuli Triani, Muzni Sahar, Tianur, Anan Nugroho, Zulfanahri, Eka Legya Frannita, Risky Nurfauzi, Ratna Lestari Budiani Buana, Widhia Oktoeberza KZ

Sardjito Hospital, Yogyakarta, Indonesia Department of Radiology, Dr. dr. Lina Choridah, dr. Reni Indrastuti, dr. Elly, dr. Endang

adinugroho@ugm.ac.id

LOCALLY ROOTED, GLOBALLY RESPECTED

169IN

UNIVERSITAS GADJAH MADA

adinugroho@ugm.ac.id

UNIVERSITAS

LOCALLY ROOTED, GLOBALLY RESPECTED

