Deep Reinforcement Learning Untuk Pembelajaran Robot

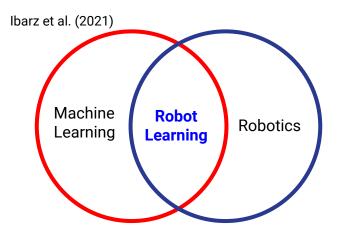
Chandra Kusuma Dewa, Ph.D. Jurusan Informatika, Universitas Islam Indonesia

Disampaikan Pada Webinar Mingguan, Indonesian Association for Pattern Recognition (INAPR) Jumat, 8 April 2022

Biodata Pemateri

- Nama: Chandra Kusuma Dewa
- Email: chandra.kusuma@uii.ac.id
- Latar Belakang Pendidikan
 - **Ph.D.**, Toyohashi University of Technology, Japan (Oktober 2018 September 2021)
 - M.Cs., Universitas Gadjah Mada, Yogyakarta (Agustus 2008 Februari 2011)
 - **S.Kom.**, Universitas Gadjah Mada, Yogyakarta (Agustus 2004 Februari 2008)

• Pengalaman Kerja

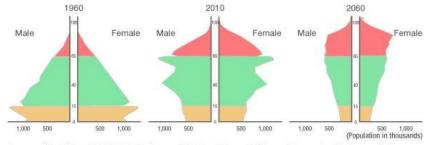

- o 2013 Sekarang: Dosen Informatika, Universitas Islam Indonesia
- o 2019: Machine Learning Engineer Intern, Honda R&D Co., Ltd., Saitama, Japan

Minat Penelitian

- Machine Learning
- Reinforcement Learning
- Robotics
- Multimedia

Topik Penelitian Yang Ditekuni

Gervasi et al. (2020)



Human-Robot Collaboration

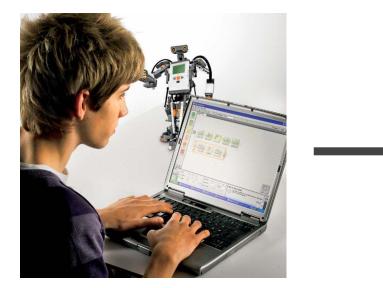
Attendant Robot Development (One of AISL-TUT Research Topics)

Kenapa Jepang Mengembangkan Attendant Robot?

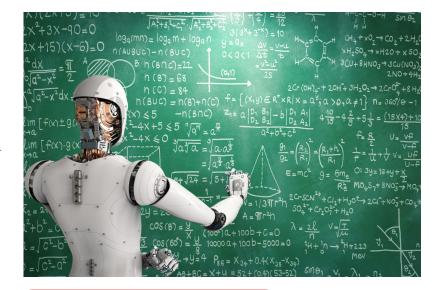
Japan's Changing Population Pyramid (population by age)

Sources: (For 1960 and 2010) Statistics Bureau (Ministry of Internal Affairs and Communications), Population Census of Japan; (for 2060 projection) National Institute of Population and Social Security Research, Population Projections for Japan (January 2012), based on medium-variant fertility and mortality assumptions.

https://www.nippon.com/en/ncommon/contents/in-depth/41813/41813.jpg


elderly

(a) Image.


(b) Range data.

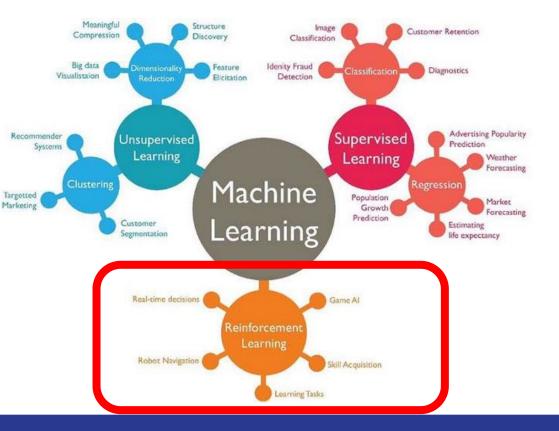
(Koide et al., 2019)

Bagaimana Mengembangkan Attendant Robot?

Directly program the robot

Can we make the robot able to learn by itself?

Is it possible? How?


Robot Learning

Pembelajaran Robot dan Reinforcement Learning (1)

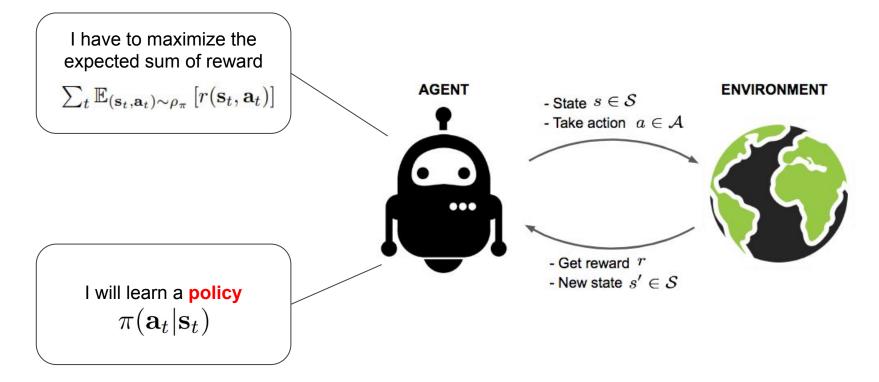
(Mueller et al., 2018)

Reinforcement Learning dan Pembelajaran Robot (2)

Robot (Agent)

Apa itu Reinforcement Learning?

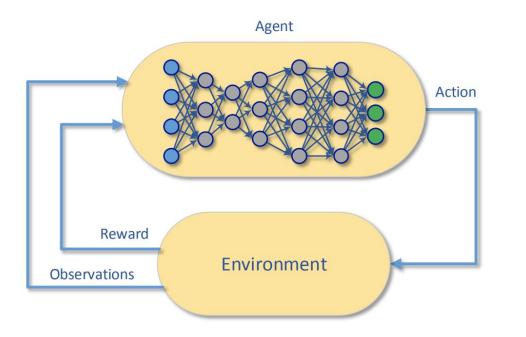
According to Sutton and Barto (2017) Reinforcement Learning (RL) is a **goal-directed** learning from **interaction** that:


- Learns what to do
- Learns how to map situations to actions
- Learns to maximize a numerical reward signal

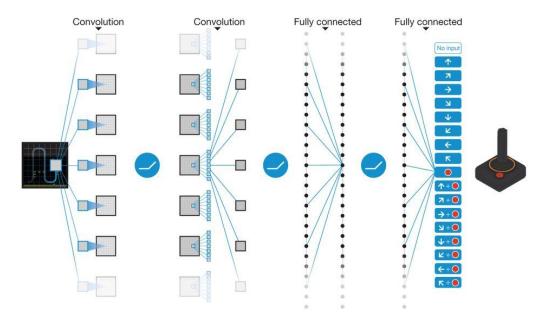
When I perform an action, I will get a reward.

hmm...

I will learn with trial-and-error strategy to maximize the reward


Mekanisme Pada Reinforcement Learning

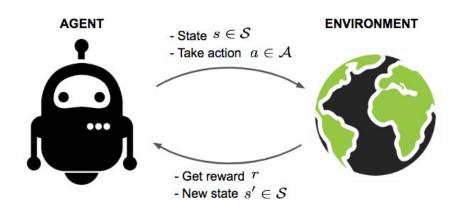
Reinforcement Learning Ingredients


- Agent Implemented as a neural networks model which is designed to map states into actions
- Environment Must follow Markov Decision Process (MDP) that:
 - Can be represented with set of states S
 - Accepts set of actions A
 - Has a state transition probability function **P**
 - $\circ \quad \text{Has a reward function } \textbf{R}$
- Learning Algorithm Force the agent to maximize future rewards

Deep Reinforcement Learning

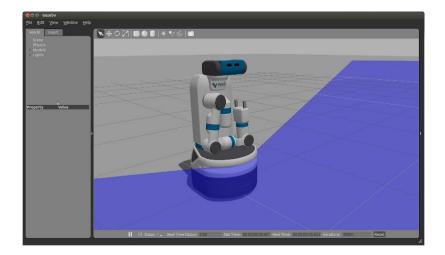
- Deep Reinforcement Learning (DRL) is the combination of deep learning and reinforcement learning
- In DRL, the agent is implemented as a deep learning model so that it can map states into actions better

Contoh Implementasi DRL Pada Game

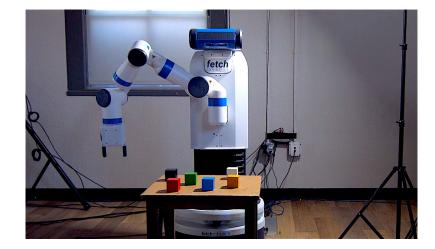

- In their paper in Nature, Mnih et al. (2015) implemented a DRL agent based on Convolutional Neural Networks (CNN)
- State in the environment is implemented as the video game screen

Contoh Proses Pembelajaran di Game

- Environment → Atari Breakout
- Learning Algorithm → Deep Q Learning
- Reward Function → Implemented based on the game's scores



Implementasi DRL Untuk Pembelajaran Robot


- Implementing the environments for the training process:
 - Realistic robot simulation
 - Real world environment
- Implementing the appropriate reward function which can guide the robot to perform a specific task correctly

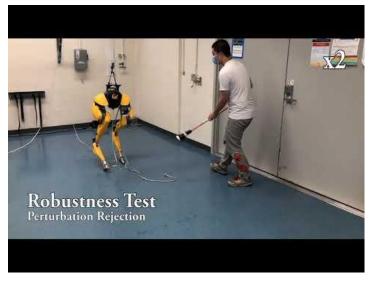
Mengimplementasikan Environment

Simulation Environment (Gazebo simulator)

V.S.

Real World Environment

DRL Training Pada Real World Environment



Haarnoja et al. (2019)

- Train a legged robot to walk directly in **real world**
- After 108 minutes, with Soft Actor-Critic learning algorithm, the robot can walk appropriately
- After obtaining the optimal policy, the robot even can walk properly under some disturbance

DRL Training Pada Simulated Environment

- Train a bipedal robot to walk with simulated environment MuJoCo simulator)
- Domain randomization technique is used so that the optimal policy can be transferred from simulator to real world smoothly (sim-to-real transfer)

Li et al. (2021)

Implementasi DRL Untuk Person-Following Robot

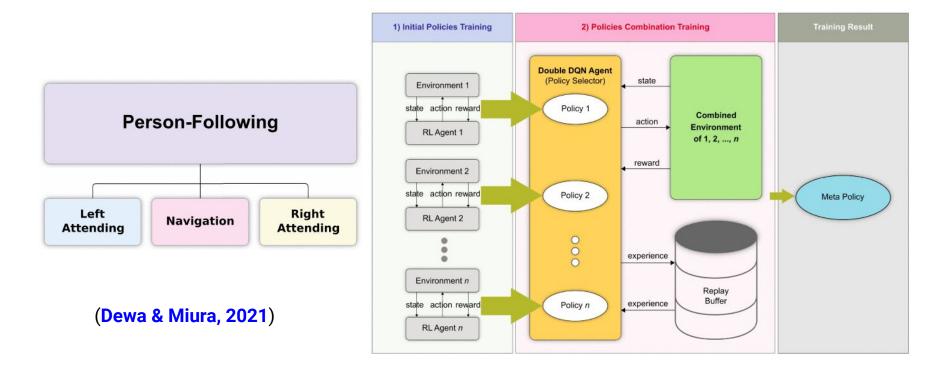
reward = 1

Pang et al. (2020)

reward = 1

reward = 1

reward = -10


Important tasks/aspects are excluded:

- Navigation
- Obstacle Avoidance
- Target person's comfortness

Image Sources: A Framework for DRL Navigation With State Transition Checking and Velocity Increment Scheduling, IEEE Access (2020). Training a Robot to Attend a Person at Specific Location Using Soft Actor-Critic Under Simulated Environment, International Symposium of System Integration (SII) (2021)

Integrating The Navigation and The Attending Policies

Terima Kasih

