

Improving Electroencephalogram Based Motor Imagery Classification Using Granular Ensemble Learning

Presented by Noor Akhmad Setiawan Electrical and Information Engineering Department Universitas Gadjah Mada at Indonesia Association for Pattern Recognition (INAPR) Weekly Seminar 7 January 2022

1. BCI Overview

BCI **Overview**

(BNCI Horizon 2020)

locally rooted, globally respected

ugm.ac.id

Research Things of Interest

2. Research **Problem**, **Objective**, and **Contribution**

Research Gaps (RGs)

 Image: Subject-dependent

 (Kayikcioglu & Aydemir, 2010; Saha et al, 2017;

Nature of EEG Signal

Multi-channel
(Miao et al., 2017)

» no specific feature extraction algorithm and classifier with a high accuracy for all the subjects (Belwafi et al., 2019)

- » the optimal accuracy results were quite variable, which demonstrated substantial inconsistency (Li et al., 2018)
- » the classification performance of all subjects difficult to improve due to differences among subject (Luo et al., 2019)

>> the estimated optimal number of channels vary with subjects (Y. Yang et al., 2017)

- » Multi-channel EEG signal may consists of irrelevant and redundant channels that increase the computation burden and reduce the recognition accuracy (Miao et al., 2017)
- >> the distributions of selected channels were different under different frequency band (Feng et al., 2019)

Inconsistent detection caused by subject-dependent problem

The need of more robust channel selection

ugm.ac.id

Li et al., 2018)

Research Problem and Research Objective

ugm.ac.id

The Proposed Methods

NWFE = Narrow Window Feature Extraction; TSD = Two Stage Detection; GrFIS = Granular Feature-Instance Selection OvO = One versus One; LRFS = Logistic Regression Feature Selection; VS = Voting Scheme.

ugm.ac.id

The Proposed Methods Contributions

ugm.ac.id

3. Research Highlights

ugm.ac.id

Datasets

BCI competition III – Dataset IVa

- 2-class (Left Hand and Foot)
- 5 subjects
- 118 channels, 280 Trials for each Subject

BCI competition IV – Dataset 2a

- 9 subjects
- 22 channels, 288 Trials for each Subject
- » 2-class → Left Hand, Right Hand
- » 4-class → Left Hand, Right Hand, Foot, Tongue
 - Inter-subject inter-session
 - Cross-subject inter-session

Evaluation aspects:

4. The Experimental Results

Summary of the Proposed Methods

Ъ <i>Л</i> Г_411_	Dataset								
Methods	Methods 1 2 3		3	Aims					
NWFE+kNN+VS	>			investigate the effectiveness of $\mathbf{MIL} + \mathbf{NWFE}$					
NWFE+OvO-TSD		>		investigate the effectiveness of \mathbf{TSD}					
LRFS+TSD	>		>	improve the detection performance with low variability across subjects					
GrFIS+TSD	>	>		select the sets of channel for improving the detection performance with low variablity across subjects					

● BCI Comp. III-Dataset IVa | ● BCI Comp. IV-Dataset 2a (4-class) | ● BCI Comp. IV-Dataset 2a (2-class)

ugm.ac.id

Proposed Method #1 – **NWFE+kNN+VS**

Proposed Method #1 – **NWFE+kNN+VS** Feature Selection Classification TSD Feature Extraction Voting Scheme Channel-instantiation Band-pass filter Channel Selection EEG-MI Dataset = 8 = 0 **BCI Competition III-Channel-trial** » 5 narrow-window window Dataset IVa instantiation » 7 statistical measure combination (2-class) pre-selected majority kNN only channel voting Investigates the effectiveness of **MIL+NWFE** (17 channels)

ugm.ac.id

NWFE+kNN+VS – Detection Performance

Exportmont		Ac	curacy	(%)		Ave	Stdow	мар
Experiment	aa	al	av	aw	ay	Avg.	Stuev	MAD
w5	86.79	80.00	91.79	87.14	92.50	87.64	5.00	3.601
w12	93.21	95.00	95.71	96.79	97.14	95.57	1.57	1.172
w123	96.79	97.50	96.79	99.29	98.93	97.86	1.18	1.000
w1234	98.57	99.29	98.57	98.93	99.64	99.00	0.47	0.372
w12345	98.57	99.29	99.64	98.93	99.64	99.21	0.46	0.371

Findings:

- » At least 2 windows are needed to produce high accuracy and low variability
- » MIL+NWFE promises to be used in EEG-MI classification

Avg. = average accuracy | Stdev = standard deviation | MAD = mean absolute deviation

High Accuracy

Low Variability

ugm.ac.id

NWFE+kNN+VS – Comparison to Previous Studies

Mothod	2	Acc	uracy ([%) *		
Methou	аа	al	av	aw	ay	average
CSP+DE-FS [7]	95.8	<u>98.8</u>	<u>89.8</u>	99.2	96.5	$\underline{96.02 \pm 3.77}$
MSPCA+WPD+HOS [8]	<u>96</u>	92.3	88.9	95.4	91.4	92.8 ± 2.93
FBRCSP [29]	91.07	94.64	75	76.78	93.65	86.23 ± 9.55
STFSCSP [27]	95.2	98.58	79.41	97.78	95.02	92.66 ± 7.78
CSP+SF [28]	72.62	95.92	63.54	89.85	88.38	82.06 ± 13.4
Experiment #1 (w5+all-ch)	99.64	99.64	99.64	99.64	100	99.71 ± 0.16
Experiment #2 (w5+17-ch)	86.79	80.00	91.79	87.14	92.50	87.64 ± 5
Experiment #3 (w12+17-ch)	93.21	95.00	95.71	96.79	97.14	95.57 ± 1.57
Experiment #4 (w123+17-ch)	96.79	97.50	96.79	99.29	98.93	97.86 ± 1.18
Experiment #5 (w1234+17-ch)	98.57	99.29	98.57	98.93	99.64	99 ± 0.47
Experiment #6 (w12345+17-ch)	98.57	99.29	99.64	98.93	99.64	99.21 ± 0.46

more competitive results (consistent high accuracy with fewer features and channels)

Findings (vs. previous studies):

- Single window (w5) with all channels outperform previous studies
- At least 3 windows with 17 selected channels can outperform previous studies

ugm.ac.id

NWFE+kNN+VS – Comparison to Previous Studies

ugm.ac.id

Proposed Method #2 – **NWFE+OvO-TSD**

locally rooted, globally respected

ugm.ac.id

NWFE+OvO-TSD- 4-class inter-subject (accuracy)

Method	Accuracy (%)											
	S1	S2	S3	S4	S5	S6	S7	S8	S9	Average		
CCNN [100]	87.14	63.1	86.76	68.29	63.61	48.32	87.73	80.17	78.83	73.77 ± 12.93		
MCNN [100]	90.21	63.4	89.35	71.16	62.82	47.66	90.86	83.72	82.32	75.72 ± 14.37		
DFBCSP+CNN Monolithic [98]	83.13	65.45	80.29	81.6	76.7	71.12	84	82.66	80.74	78.41 ± 5.91		
DFBCSP+CNN Modular [98]	84.91	66.38	84.74	81.36	79.22	70.67	86.12	83.81	83.04	80.03 ± 6.52		
OVO-LDA [101]	82.29	40.97	84.03	60.07	58.68	46.87	76.04	79.17	78.47	67.4 ± 15.22		
OVR-LDA [101]	82.29	46.18	79.51	63.19	57.29	53.12	77.78	76.39	77.08	68.09 ± 12.56		
OVO-OVR-TVT- DST [101]	83.33	69.09	88.89	79.17	75	68.06	85.42	89.24	90.97	81.02 ± 8.19		
STR+LSC [90]	60	33	67	45	33	33	35	70	67	49.22 ± 15.60		
2L-CNN [102]	85.71	78.57	92.15	95.67	89.2	85.12	79.23	81.28	80.67	85.29±5.67		
NWFE+OvO-TSD	75	95.14	84.72	76.04	88.19	72.92	72.22	92.01	87.85	82.68 ± 8.24		

The proposed methods vs. Prior Research:

- Outperform 2 of 9 subjects (22.22%)
- 2nd Best for overall average accuracy

ugm.ac.id

pected

NWFE+OvO-TSD – 4-class inter-subject (accuracy)

ugm.ac.id

NWFE+OvO-TSD – 4-class inter-subject (kappa coeff.)

Mothod		Kappa coefficient													
Methou	S1	S2	S3	S4	S5	S6	S7	S8	S9	Average					
DFBCSP+CNN Monolithic [98]	0.68	0.36	0.69	0.62	0.6	0.45	0.71	0.72	0.66	0.61 ± 0.12					
DFBCSP+CNN Modular [98]	0.67	0.35	0.65	0.62	0.58	0.45	0.69	0.7	0.64	0.59 ± 0.11					
OVO-OVR-TVT- DST [101]	0.78	0.59	0.85	0.72	0.67	0.57	0.81	0.86	0.88	0.75 ± 0.11					
STR+LSC [90]	0.46	0.13	0.56	0.26	0.11	0.11	0.16	0.6	0.56	0.33 ± 0.20					
2L-CNN [102]	0.70	0.59	1.00	1.00	0.83	0.80	0.72	0.63	0.64	0.77 ± 0.15					
NWFE+OvO-TSD	0.69	0.94	0.81	0.7	0.85	0.67	0.66	0.9	0.84	0.78±0.10					

The proposed methods vs. Prior Research:

• Outperform 3 of 9 subjects (33.33%)

ugm.ac.id

• Higher overall average kappa coefficient + lower standard deviation

NWFE+OvO-TSD – 4-class inter-subject (kappa coeff.)

ugm.ac.id

NWFE+OvO-TSD – 4-class cross-subject (accuracy)

NWFE+OvO-TSD – 4-class cross-subject (accuracy)

ugm.ac.id

NWFE+OvO-TSD – Significance Test (Bonferonni-Dunn test)

ugm.ac.id

Proposed Method #3 – LRFS+TSD

ugm.ac.id

LRFS+TSD – Feature Selection results

		Selected Features		1
window	#Feature	Feature's Name		
w1	1	skewness1	6-	
w2	3	mav2, skewness2, kurtosis2	5-	
w3	2	skewness3, kurtosis3	<i>w</i>	
w4	2	skewness4, kurtosis4	ture	
w5	0	-	#fea	
w6	1	skewness6		
w7	1	kurtosis7	2-	
w8	1	skewness8	1-	
w9	1	kurtosis9		
w10	2	skewness10, kurtosis10]	
Total	14		-	

Findings:

» skewness and kurtosis show as discriminatory features followed by mav which is also a feature that determines the effectiveness of the classification

ugm.ac.id

locally rooted, globally respected

may

LRFS+TSD – BCI Competition III-Dataset IVa

Mothod		Accuracy (%)											
Methou	aa	al	av	aw	ay	Avg.							
DSAA [84]	69.64	96.42	60.57	70.53	78.57	75.15 ± 13.49							
CSP+SGRM [85]	73.9	94.5	59.5	80.7	79.9	77.70 ± 12.67							
LRFCSP+SVM [86]	98.93	93.21	81.79	93.21	97.5	92.93 ± 6.73							
GQCSP+SVM [89]	82.59	97.19	75.94	98.2	99	90.58 ± 10.62							
CSPRMF+LDA [88]	81.43	92.41	70	83.57	85	82.48 ± 8.11							
LRFS+TSD	93.93	92.14	98.57	94.64	96.79	95.21 ± 2.51							

The proposed methods vs. Prior Research:

- Outperform 2 of 5 subjects (40%)
- Higher overall average accuracy + lower standard deviation

ugm.ac.id

LRFS+TSD – BCI Competition IV-Dataset 2a (L/R only)

Mathod		Accuracy (%)													
Method	S1	S2	S3	S4	S5	S6	S7	S8	S9	Average					
STR [90]	83	50	94	62	57	63	54	88	75	69.56 ± 15.93					
CCSP+SVM [91]	92.1	66.7	97.3	82.8	65.5	76.9	81.8	97.4	87.5	83.11 ± 11.86					
MEMDBF+CSP [92]	90.78	57.75	97.08	70.69	61.48	70.37	72.14	97.76	94.62	79.19 ± 15.85					
TSGSP+SVM [93]	87	64.7	93.8	74.3	90.4	63.9	91.4	95.8	81.3	82.51 ± 12.24					
ARFD+LDA [94]	74	59	83	60	60	66	67	88	90	71.89 ± 12.36					
CSE+UAEL [95]	91.67	63.89	94.44	72.22	77.08	75.69	73.61	94.44	90.28	81.48 ± 11.33					
DSAA [96]	88.88	80.55	93.05	52.09	87.5	90.27	92.36	85.41	92.36	84.72 ± 12.87					
SJGDA+KNN [97]	90.29	74.62	93.05	75.02	75.31	78.15	85.08	92.35	94.14	84.22 ± 8.46					
DFBCSP+CNN [98]	87.8	68.41	91.68	80.41	88.89	78.45	86.52	92.32	90.89	85.04 ± 7.88					
LRFS+TSD	96.53	97.22	94.44	90.97	100	95.14	93.06	95.83	90.28	94.83 ± 3.07					

The proposed methods vs. Prior Research:

- Outperform 6 of 9 subjects (66.67%)
- Higher overall average accuracy + lower standard deviation

ugm.ac.id

LRFS+TSD –Significance Test

ugm.ac.id

Proposed Method #4 – GrFIS+TSD

ugm.ac.id

GrFIS+TSD – Channel selection results

No	ch 2a	ch IVa	#correct instance
1	EEG19	P1	248
2	EEG21	P2	247
3	Fz	Fz	245
4	EEG22	POz	245
5	EEG16	CPz	237
6	EEG17	CP2	236
7	EEG15	CP1	235
8	EEG3	FC1	234
9	EEG18	CP4	233
10	Pz	Pz	232
11	EEG4	FCz	230
12	EEG14	CP3	229
13	Cz	Cz	229
14	EEG11	C2	228
15	EEG6	FC4	224
16	EEG2	FC3	222
17	EEG9	C1	221

Top 17 selected channels:

- » 17 out of 118 channels on BCI comp III-Dataset IVa
- » 17 out of 22 channels on BCI comp IV-Dataset 2a

Note:

- » Channel selection based in BCI comp III-Dataset IVa
- The same 17-elected channels to ensure the robustness of the Channel selection methods (GrFIS)

12 of 17 channels are related to Cortex area

Note: Top 17 channels based on granular instance selection for BCI competition III-Dataset IVa (ch IVa) and BCI competition IV-Dataset 2a (ch 2a)

ugm.ac.id

GrFIS+TSD – 2-class classification

	Accuracy (%)											
Method	aa	al	av	aw	ay	Avg.						
DSAA [107]	69.64	96.42	60.57	70.53	78.57	75.15 ± 13.49						
CSP+SGRM [67]	73.9	94.5	59.5	80.7	79.9	77.70 ± 12.67						
LRFCSP+SVM [70]	98.93	93.21	81.79	93.21	97.5	92.93 ± 6.73						
GQCSP+SVM [105]	82.59	97.19	75.94	98.2	99	90.58 ± 10.62						
CSPRMF+LDA [72]	81.43	92.41	70	83.57	85	82.48 ± 8.11						
Experiment #1 (11-ch)	97.86	91.79	92.50	96.79	91.79	94.15 ± 2.63						
Experiment #2 (13-ch)	98.57	92.86	92.50	97.14	93.57	94.93 ± 2.46						
Experiment #3 (15-ch)	97.50	91.79	95.00	97.14	98.57	96.00 ± 2.40						
Experiment #4 (17-ch)	97.86	93.21	98.21	97.86	98.57	97.14 ± 1.98						

Findings:
> all experiments outperformed the previous studies in both average accuracy and standard deviation
> higher average accuracy → improve the detection

» narrower spread \rightarrow low variability

ugm.ac.id

GrFIS+TSD – Significance test

ugm.ac.id

GrFIS+TSD – 4-class classification (accuracy)

Mathod					Accu	racy (%					
Method	S1	S2	S3	S4	S5	S6	S7	S8	S9	Average	100 -
CCNN [106]	87.14	63.1	86.76	68.29	63.61	48.32	87.73	80.17	78.83	73.77 ± 12.93	
MCNN [106]	90.21	63.4	89.35	71.16	62.82	47.66	90.86	83.72	82.32	75.72 ± 14.37	
DFBCSP+CNN Monolithic [69]	83.13	65.45	80.29	81.6	76.7	71.12	84	82.66	80.74	78.41 ± 5.91	
DFBCSP+CNN Modular [69]	84.91	66.38	84.74	81.36	79.22	70.67	86.12	83.81	83.04	80.03 ± 6.52	
OVO-LDA [65]	82.29	40.97	84.03	60.07	58.68	46.87	76.04	79.17	78.47	67.4 ± 15.22	
OVR-LDA [65]	82.29	46.18	79.51	63.19	57.29	53.12	77.78	76.39	77.08	68.09 ± 12.56	40-
OVO-OVR- TVT-DST [65]	83.33	69.09	88.89	79.17	75	68.06	85.42	89.24	90.97	81.02 ± 8.19	
STR+LSC [78]	60	33	67	45	33	33	35	70	67	49.22 ± 15.60	M8 M5 M6 M1 M2 M3 M4 M7 M9 PM
2L-CNN [121]	85.71	78.57	92.15	95.67	89.2	85.12	79.23	81.28	80.67	85.29 ± 5.67	narrower spread → lower variability
GrFIS+TSD	86.81	96.18	88.54	81.6	91.67	83.33	78.82	89.58	82.99	86.61 ± 5.16	

higher average accuracy \rightarrow improve the detection

ugm.ac.id

GrFIS+TSD – Significance test

Mathad	- 	8	Ra	nk		2 E	Avg.	
MICINO	Range	Q1	Q3	MAD	CV	CVQ	Rank	
CCNN [106]	8	6	5	6	6	8	6.50	
MCNN [106]	10	7	2	8	8	9	7.33	1 2 3 4 5 6 7 8 9 10
DFBCSP+CNN Monolithic [69]	3	4	7	3	3	2	3.67	
DFBCSP+CNN Modular [69]	4	3	6	4	4	1	3.67	DFBCSP+CNN+Mono OVR-LDA
OVO-LDA [65]	9	8	8	9	9	6	8.17	DFBCSP+CNN+Mod MCNN
OVR-LDA [65]	6	9	9	7	7	7	7.50	OVO-OVR-TVT-DST CCNN
OVO-OVR-TVT-DST [65]	5	5	4	5	5	5	4.83	
STR+LSC [78]	7	10	10	10	10	10	9.50	
2L-CNN [121]	1	2	3	2	2	4	2.33	
GrFIS+TSD	2	1	1	1	1	3	1.50	

Findings:

> the proposed method has the lower number of rank compared to the previous studies
 > the proposed method has significant differences with most of the previous studies

ugm.ac.id

5. Comparison **between** The Proposed Methods

Comparison between The Proposed Methods

BCI competition III – Dataset IVa (2-class)

Method	Fynariment		Average					
Methou	Laperment	аа	al	av	aw	ay	nveruge	
NWEELLNNIVS	14 F + 17-ch	93.21	95.00	95.71	96.79	97.14	95.57 ± 1.57	
IN W F E+KININ+V S	$21~\mathrm{F}+17\mathrm{-ch}$	96.79	97.50	96.79	99.29	98.93	97.86 ± 1.18	
LRFS+TSD	$14~\mathrm{F}$ + 17-ch	93.93	92.14	98.57	94.64	96.79	95.21 ± 2.51	
GrFIS+TSD	19 F + 17-ch	97.86	93.21	98.21	97.86	98.57	97.14 ± 1.98	

BCI competition IV – Dataset 2a (4-class)

Mathad	Accuracy (%)										
Method	S 1	S2 S3		S4 S5		S6 S7		S 8	S 9	Average	
NWFE+OvO-TSD	75	95.14	84.72	76.04	88.19	72.92	72.22	92.01	87.85	82.68 ± 8.24	
GrFIS+TSD	86.81	96.18	88.54	81.6	91.67	83.33	78.82	89.58	82.99	86.61 ± 5.16	

GrFIS+TSD show its *effectiveness* and *competitiveness*

ugm.ac.id

6. Discussion – **Consistency** Measure and **Rationalization** of Improvement

Consistency Measure

» measures of dispersion is a measure used to show how spread out (variation) in a data set (Mishra et al., 2019)

» measure of dispersion indicates the degree of spread or distribution of the data (Sheard, 2018)

- » ...also called measures of variation (Mishra et al., 2019)
- » ...also expressed by fluctuation, spread, scatter, or variation (Rayat, 2018)

ugm.ac.id

Consistency *Measure* – *Example from The Proposed Method #3 (LRFS+TSD)*

Mathod	Accuracy (%)*								
Methou	aa	al	av	aw	ay				
DSAA [88]	69.64	96.42	60.57	70.53	78.57				
CSP+SGRM [89]	73.9	94.5	59.5	80.7	79.9				
LRFCSP+SVM [90]	98.93	93.21	81.79	93.21	97.5				
GQCSP+SVM [91]	82.59	97.19	75.94	98.2	99				
CSPRMF+LDA [92]	81.43	92.41	70	83.57	85				
LRFS+TSD (17-ch)	93.93	92.14	98.57	94.64	96.79				

Range	Q1	Q3	MAD	CV	CQV
35.85	69.64	78.57	9.8792	0.1796	0.0603
35	73.9	80.7	8.8000	0.1630	0.0440
17.14	93.21	97.5	4.4552	0.0724	0.0225
23.06	82.59	98.2	9.0552	0.1172	0.0863
22.41	81.43	85	5.4136	0.0983	0.0215
6.43	93.93	96.79	1.9728	0.0263	0.0150
	Range 35.85 35 17.14 23.06 22.41 6.43	RangeQ135.8569.643573.917.1493.2123.0682.5922.4181.436.4393.93	RangeQ1Q335.8569.6478.573573.980.717.1493.2197.523.0682.5998.222.4181.43856.4393.9396.79	RangeQ1Q3MAD35.8569.6478.579.87923573.980.78.800017.1493.2197.54.455223.0682.5998.29.055222.4181.43855.41366.4393.9396.791.9728	RangeQ1Q3MADCV35.8569.6478.579.87920.17963573.980.78.80000.163017.1493.2197.54.45520.072423.0682.5998.29.05520.117222.4181.43855.41360.09836.4393.9396.791.97280.0263

Methods	Range	Q1	Q3	MAD	cv	CQV	Avg. Rank		Significant Test for BCI Comp. III-Dataset IVa (CD = 2.78)
DSAA [88]	6	6	6	6	6	5	5.83	(1 2 3 4 5 6
CSP+SGRM [89]	5	5	5	4	5	4	4.67		
LRFCSP+SVM [90]	2	2	2	2	2	3	2.17		
GQCSP+SVM [91]	4	3	1	5	4	6	3.83		LRES+TSD DSAA
CSPRMF+LDA [92]	3	4	4	3	3	2	3.17		LRFCSP+SVM CSP+SGRM
LRFS+TSD (17-ch)	1	1	3	1	1	1	1.33		CSPRMF+LDA GQCSP+SVM

More consistent compared to all previous studies

ugm.ac.id

Rationalization of Improvement

- **1**. Feature Extraction Technique
 - \bigcirc Narrow Windows Approach \rightarrow handling non-stationary EEG signal
 - \bigcirc Statistical Features \rightarrow 7 statistical measures (5 SoTA, 2 new implementation)
- 2. Feature-Channel Selection Technique
 - \bigcirc Granular Computing Approach \rightarrow clustering based granulation
- 3. Classifier Approach
 - \bigcirc Ensemble Technique \rightarrow hybrid classifier
- 4. Learning Approach
 - \bigcirc Multi-instance Learning Approach \rightarrow instance-level
 - \bigcirc Voting Scheme \rightarrow majority voting and probability voting

7. Conclusions and Future Works

Conclusions

» A combination of multi-instance learning, narrow window feature extraction, and ensemble learning approaches is *able to address subject-dependent problems* effectively, and the results are promising

» The granular computing approach has demonstrated its *efficacy for feature selection and channel selection* by producing competitive and robust results for a wide range of subjects across many datasets.

That's all, thank you...

- Belwafi, K., Gannouni, S., Aboalsamh, H., Mathkour, H., & Belghith, A. (2019). A dynamic and self-adaptive classification algorithm for motor imagery EEG signals. Journal of neuroscience methods, 327, 108346.
- Burianová, H., Marstaller, L., Sowman, P., Tesan, G., Rich, A. N., Williams, M., ... Johnson, B. W. (2013). Multimodal functional imaging of motor imagery using a novel paradigm. NeuroImage, 71, 50–58.
- Feng, J. K., Jin, J., Daly, I., Zhou, J., Niu, Y., Wang, X., & Cichocki, A. (2019). An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System. Computational Intelligence and Neuroscience, 2019, 1–10.
- Kayikcioglu, T., & Aydemir, O. (2010). A polynomial fitting and k-NN based approach for improving classification of motor imagery BCl data. Pattern Recognition Letters, 31(11), 1207–1215.
- Kevric, J., & Subasi, A. (2017). Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomedical Signal Processing and Control, 31, 398-406.
- Krishna, D. H., Pasha, I. A., & Savithri, T. S. (2016). Classification of EEG motor imagery multi class signals based on cross correlation. Procedia Computer Science, 85, 490-495.
- Li, D., Zhang, H., Khan, M. S., & Mi, F. (2018). A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomedical Signal Processing and Control, 41, 222–232.
- Luo, J., Feng, Z., & Lu, N. (2019). Spatio-temporal discrepancy feature for classification of motor imageries. Biomedical Signal Processing and Control, 47, 137–144.
- Miao, M., Zeng, H., Wang, A., Zhao, C., & Liu, F. (2017). Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach. Journal of Neuroscience Methods, 278, 13–24.
- Minguillon, J., Lopez-Gordo, M. A., & Pelayo, F. (2017). Trends in EEG-BCI for daily-life: Requirements for artifact removal. Biomedical Signal Processing and Control, 31, 407-418.
- Mirvaziri, H., & Mobarakeh, Z. S. (2017). Improvement of EEG-based motor imagery classification using ring topology-based particle swarm optimization. Biomedical Signal Processing and Control, 32, 69-75.
- Mishra, P., Pandey, C., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67.
- Müller-Putz, G. R., Brunner, C., Bauernfeind, G., Blefari, M. L., Millan, J. D. R., Real, R. G. L., ... & Opisso, E. (2015). The future in brain/neural computer interaction: Horizon 2020.
- Rayat, C. S. (2018). Measures of Dispersion. In Statistical Methods in Medical Research (pp. 47–60). Springer.
- Saha, S., Ahmed, K. I. U., Mostafa, R., Hadjileontiadis, L., & Khandoker, A. (2017). Evidence of variabilities in EEG dynamics during motor imagery-based multiclass brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(2), 371-382.
- Sheard, J. (2018). Quantitative data analysis. In Research Methods (pp. 429–452). Elsevier.
- Yang, Y., Chevallier, S., Wiart, J., & Bloch, I. (2017). Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels. Biomedical Signal Processing and Control, 38, 302–311.

ugm.ac.id